An Efficient Toolkit for Computing Private Set Operations

نویسندگان

  • Alex Davidson
  • Carlos Cid
چکیده

Private set operation (PSO) protocols provide a natural way of securely performing operations on data sets, such that crucial details of the input sets are not revealed. Such protocols have an everincreasing number of practical applications, particularly when implementing privacy-preserving data mining schemes. Protocols for computing private set operations have been prevalent in multi-party computation literature over the past decade, and in the case of private set intersection (PSI), have become practically feasible to run in real applications. In contrast, other set operations such as union have received less attention from the research community, and the few existing designs are often limited in their feasibility. In this work we aim to fill this gap, and present a new technique using Bloom filter data structures and additive homomorphic encryption to develop the first private set union protocol with both linear computation and communication complexities. Moreover, we show how to adapt this protocol to give novel ways of computing PSI and private set intersection/union cardinality with only minor changes to the protocol computation. Our work resembles therefore a toolkit for scalable private set computation with linear complexities, and we provide a thorough experimental analysis that shows that the online phase of our designs is practical up to large set sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An E cient Toolkit for Computing Private Set Operations

Private set operation (PSO) protocols provide a natural way of securely performing operations on data sets, such that crucial details of the input sets are not revealed. Such protocols have an everincreasing number of practical applications, particularly when implementing privacy-preserving data mining schemes. Protocols for computing private set operations have been prevalent in multi-party co...

متن کامل

An Efficient Resource Allocation for Processing Healthcare Data in the Cloud Computing Environment

Nowadays, processing large-media healthcare data in the cloud has become an effective way of satisfying the medical userschr('39') QoS (quality of service) demands. Providing healthcare for the community is a complex activity that relies heavily on information processing. Such processing can be very costly for organizations. However, processing healthcare data in cloud has become an effective s...

متن کامل

SESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing

While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...

متن کامل

An Efficient Genetic Algorithm to Solve the Intermodal Terminal Location problem

The exponential growth of the flow of goods and passengers, fragility of certain products and the need for the optimization of transport costs impose on carriers to use more and more multimodal transport. In addition, the need for intermodal transport policy has been strongly driven by environmental concerns and to benefit from the combination of different modes of transport to cope with the in...

متن کامل

Computing Private Set Operations with Linear Complexities

Private set operation (PSO) protocols provide a natural way of securely performing operations on data sets, such that crucial details of the input sets are not revealed. Such protocols have an everincreasing number of practical applications, particularly when implementing privacy-preserving data mining schemes. Protocols for computing private set operations have been prevalent in multi-party co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017